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In nanowire growth, kinetic processes at the growth interface can play an important role in governing wire
compositions, morphologies, and growth rates. Molecular-dynamics simulations have been undertaken to probe
such processes in a system featuring a solid-liquid interface shape characterized by a facet bounded by rough
orientations. Simulated growth rates display a dependence on nanowire diameter consistent with a size-
dependent barrier for facet nucleation. A theory for the interface mobility is developed, establishing a source
for size-dependent growth rates that is an intrinsic feature of systems possessing growth interfaces with faceted
and rough orientations.
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The vapor-liquid-solid �VLS� method �1� has found wide-
spread use in the synthesis of elemental, compound, and
multilayer nanowires for a wide variety of potential techno-
logical applications �2�. Due to the pronounced interest in
this technique, substantial efforts have been aimed at devel-
oping theoretical models for VLS growth �e.g., �3–10��.
Among the outstanding questions, an issue of primary impor-
tance concerns the nature of intrinsic size effects underlying
diameter dependencies of nanowire growth rates and mor-
phologies. Size effects in VLS growth are known to reflect
the nature of the rate-limiting processes operating under
given synthesis conditions �6�. For situations where the rate-
limiting process is adsorption and chemical dissociation of
vapor-phase molecules at the catalyst-vapor surface, growth
rates have been shown to be independent of the nanowire
diameter �3�. By contrast, if the rate-limiting step involves
mass transport along the nanowire-vapor surface, an increas-
ing growth rate with decreasing diameter is predicted
�6,11–13�. The opposite trend is expected when the rate-
limiting step is the nucleation and spreading of two-
dimensional islands at the catalyst-nanowire interface. In this
case size effects arise due to the transition from mononuclear
to polynuclear island growth with increasing diameter �4�,
and the dependencies of both island nucleation and spreading
rates on the system size �9,14�.

It has long been appreciated that intrinsic size dependen-
cies for island nucleation kinetics can arise through
capillarity-related Gibbs-Thomson effects �14�. In VLS
growth these effects are traditionally associated with the
curved nanowire solid-vapor and catalyst liquid-vapor sur-
faces �14,15�—nanowire-catalyst interfaces are often as-
sumed to be faceted and flat, and thus they generally have
not been considered as a source of such effects. Very re-
cently, however, experimental observations �16,17� have
shown that, in some cases, in both VLS and the related
vapor-solid-solid �18� growth method, the nanowire-catalyst
interface can be nonplanar. In this Rapid Communication we

present results of molecular-dynamics �MD� simulations
demonstrating that the presence of nonplanar nanowire-
catalyst interfaces with a faceted segment bounded by rough
orientations gives rise to a qualitatively distinct size effect in
nanowire growth. This effect is associated with a pronounced
size dependence of the barrier to nucleate a new terrace at
the faceted solid-liquid interface. Based on the insights from
MD we develop a theory for the interface mobility, establish-
ing that the observed size effects should be relevant at ex-
perimentally accessible crystallization velocities.

To investigate kinetic processes underlying crystallization
during nanowire growth by MD, we consider the Stillinger-
Weber model of elemental Si �21�. This system is known to
crystallize in the diamond-cubic crystal structure and fea-
tures faceted solid-liquid interfaces. By studying an elemen-
tal system, rather than the metal-catalyst/semiconductor-
crystal systems typical of VLS growth, our aim is to
elucidate effects associated purely with interface kinetic pro-
cesses on a time scale accessible by MD simulations. The
generalization of the MD results for the alloy case at experi-
mentally relevant small driving forces is discussed in the
latter part of this Rapid Communication.

In the MD simulations �19�, bulk solid and liquid samples
were equilibrated separately and then joined together to yield
coexisting phases separated by crystal-melt interfaces ori-
ented normal to the �111� crystallographic direction, follow-
ing the procedure described in Ref. �20�. Equilibration runs
were then conducted with periodic boundary conditions im-
posed in each of the three orthogonal directions. Subse-
quently, the periodic boundaries were removed in one of the
directions parallel to the interface as well as in the direction
perpendicular to it, producing solid-vacuum and liquid-
vacuum surfaces, meeting the solid-liquid interface at a
three-phase contact line. The system is then allowed to relax
in constant-energy MD simulations. An example of a result-
ing structure is shown in Fig. 1.

An important feature of the structure in Fig. 1 is the non-
planar nature of the crystal-melt interface, which contains a
�111� facet in the middle, bounded by curved regions that
join smoothly to the solid-vapor and liquid-vapor surfaces at
the contact line. In separate simulations for solid nanocrys-
tals equilibrated in a bulk liquid, an equilibrium shape is
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obtained that also features �111� facets bounded by curved
rough orientations; the interface shown in Fig. 1 is thus in-
terpreted to represent a portion of the equilibrium Wulff
shape. Qualitatively, the nonplanar geometry of the solid-
liquid interface in Fig. 1 is similar to the nanowire-catalyst
interfaces observed by Sutter and Sutter �16� for Ge VLS
nanowires at 748 K.

To study the kinetics of the solid-liquid interface a driving
force for crystallization is provided by cooling the system
below its �size-dependent� coexistence temperature. For the
geometries illustrated by Fig. 1 it proved difficult to achieve
steady-state growth. For the results discussed in the remain-
der of this Rapid Communication, we found it to be advan-
tageous to retain the periodic boundary conditions along the
growth direction during the equilibration and subsequent
growth simulations. This implies the presence of two solid-
liquid interfaces within the simulation cell. The left panel of
Fig. 2 illustrates the geometry of the simulation cell, zoomed
in to highlight the structure of one of the solid-liquid inter-
faces. The interface shape and contact line are seen to be
similar to that shown in Fig. 1—differences in facet width
and interface roughness are due to shape fluctuations and ter-
race nucleation, which are more pronounced for the smaller
size and growth conditions associated with Fig. 2 �22�.

To study the effect of the nanowire size on the interface
kinetics we prepared three samples with widths D=5, 7.7,
and 10 nm. After equilibrating each, the final coexistence
temperatures �Tc� were found to be size dependent; values of
Tc=1589, 1625, and 1637 K, were obtained for D=5, 7.7,
and 10 nm, respectively, using the coexistence method de-
scribed in Refs. �20,23� to obtain values of Tc to a precision
of a few K. These represent undercoolings ��Tc�TM −Tc�
relative to the bulk melting temperatures �TM =1677 K� of
88, 52, and 40 K, respectively, due to a Gibbs-Thomson cap-
illarity effect associated with the curvature of the rough parts

of the solid-liquid interface. For the geometry considered
here the rough orientations can be approximated as having a
cylindrical shape and the appropriate expression for the cap-
illary undercooling is �Tc= ��cVmTM /L� /R, where Vm is the
solid atomic volume, L is the latent heat of melting �per
atom�, �c is the interfacial free energy of the rough portions
of the solid-liquid interface �assumed isotropic�, and R
=D /2. The MD data for �Tc are well fit by this relation with
�c=0.32 J /m2.

Growth simulations were performed at temperatures T
=Tc−�Tk, representing finite undercoolings ��Tk� below Tc.
In discussing the results of these simulations in the context
of the theoretical model below, it will be convenient to ex-
press the thermodynamic driving force through the dimen-
sionless variable �=�Tk /�Tc. Values of �Tk ranging be-
tween 10 and 30 K were employed in these growth
simulations. Results are shown in Fig. 3, which plots the
measured growth velocities �V� versus � for the three nano-
wire sizes. The solid lines represent best fits of the theoreti-
cal model described below. The most important aspect of the
results plotted in Fig. 3 is the strong size dependence of the
relationship between V and �. Specifically �see the inset�, the
growth velocity at a fixed driving force is seen to increase
significantly with decreasing size.

To gain insight into the growth mechanisms we used an
analysis employing a local structural order parameter de-
signed to distinguish between atoms in solid and liquid
phases �23�. This order parameter has been used also to color
Figs. 1 and 2, where the liquid and solid atoms for which the
parameter was below or above a certain threshold, respec-
tively, are shown in different colors �red for liquid and blue
for solid online�. In Fig. 2 we show a snapshot of a 7.7-nm-
wide nanowire during growth. The panel on the left of Fig. 2
shows a cross-sectional view of one of the two growing in-
terfaces, and on the right are plan views of the two layers
above and below the solid-liquid interface. These latter con-
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FIG. 1. �Color online� A snapshot of an equilibrated elemental
nanowire. The crystal-melt interface is nonplanar with a flat faceted
segment in the middle bounded by rough parts near the contact line
where the three phases meet. Atoms are given different colors �red
for liquid and blue for solid online� based on the value of a local
structural order parameter discussed in the text. Note that the MD
simulations that produced this structure employed periodic bound-
ary conditions in the direction into the page, so that the solid-liquid
interface has the shape shown in the plan views of Fig. 2.
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FIG. 2. �Color online� A cross-sectional view of the solid-liquid
interface in a growing 7.7 nm nanowire is shown on the left. The
figures on the right are plan views of the layers on top of and below
the growing interface. The presence of a small crystal nucleus on
the top right panel is apparent, located on the underlying crystal
terrace shown below. Note that the simulation cell shown on the left
is periodic in the direction into the page.
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tain atoms within layers of thickness a=0.3 nm, the distance
between neighboring �111� bilayers in the Si diamond struc-
ture. The presence of a small solid nucleus located on top of
the crystal terrace is apparent. From such visualizations, it is
observed that the crystal grows in a layer-by-layer mode,
with new crystalline layers forming through nucleation and
spreading of a single nucleus. In addition to the growth simu-
lations, we performed long MD runs under equilibrium con-
ditions ��=0�. In these simulations both facet growth �fg�
and facet shrinkage �fs� processes can be observed; the
former involves the formation of new layers through the
terrace-nucleation mechanism, while the latter occurs by
melting inward from the periphery. Based on the insights
derived from the MD simulations and models for the dynam-
ics of faceted interfaces in pure materials �24–28�, we de-
velop the following kinetic theory for nanowire growth, ap-
plicable to both pure systems �with thermally driven growth,
as in the MD simulations� and alloys �with growth driven by
supersaturation, as in experiment� with growth interfaces
containing a facet bounded by rough orientations.

We consider the interface geometry illustrated in Fig. 4,
for which the net nanowire growth velocity reflects a balance
between the fg and fs processes: V=Vfg−Vfs. Facet growth
and shrinkage are assumed to have activated rates: Vfg
=V0 exp�−� fg

� /kBT� and Vfs=V0 exp�−� fs
� /kBT�, where � fg

�

and � fs
� are nucleation barriers and V0 is a kinetic prefactor.

To derive expressions for the nucleation barriers we model
the nanowire geometry as in Fig. 4. The facet has a radius ���
expressed as �=R sin���, in terms of the nanowire radius R
and the angle � between the rough and faceted parts of the
solid-liquid interface. In three dimensions, we assume that
the rough portions of the solid-liquid interface have the
shape of a truncated sphere capped by a circular facet. In this
geometry, the free energy to form a circular nucleus can be
written as �=2�r	−�r2a�
. Here, 	 denotes the energy of
the step at the periphery of the cluster, which can be related

to the interfacial free energy ��c� through the relation 	
=a�c sin��� �24�. �
 is the difference in the grand potential
�per volume� between liquid and solid phases, which con-
tains two contributions, associated with the capillary driving
force ��
c=2�c /R� and the kinetic undercooling ��
k�. As
above, we define �=�
k /�
c.

The net result is an energy to form a nucleus through fg
or fs mechanisms illustrated on the right of Fig. 4. It can be
shown �see supplemental material �29�� that

r� = �/2�1 + �� ,

� fg
� = �0

�/�1 + �� ,

� fs
� = �0

��1 + 2��2/�1 + �� . �1�

The equilibrium nucleation barrier �0
� is given by the size-

dependent relation,

�0
� = �Ra�c sin2���/2. �2�

For elemental systems with �=0, Eqs. �1� and �2� reduce to
the formulas for terrace nucleation on faceted nanoparticles
derived by Mullins and Rohrer �24�. The final expression for
the growth velocity is

V��� = V0�exp�− � fg
� /kBT� − exp�− � fs

� /kBT�� . �3�

To check the validity of this theory we compare its pre-
dictions with the MD results. For the pure system and quasi-
two-dimensional geometry considered by MD, it can be
shown that the above theoretical model predicts the same
form for the dependence of V on � as given by Eqs. �1� and
�3�. In the MD case, �=�Tk /�Tc and �0

� is given by multi-
plying Eq. �2� by a geometrical factor of 2 /�. Inserting these
expressions into Eq. �3� leads to a model that can be fit to the
MD data. In this fit, we make use of the value of �c
=0.32 J /m2 �see above�. There remain two fitting param-
eters: sin��� and V0. The fit is shown in Fig. 3, where the
optimal parameter values are sin���=0.45�5� and V0
=12�4� m /s. The value of sin��� is reasonable, as it implies
an equilibrium facet radius that is roughly half the nanowire
diameter, which is consistent with the images in Figs. 1 and
2. As shown in the inset to Fig. 3, the model accurately

FIG. 3. �Color online� Growth velocity V versus the dimension-
less driving force �. The lines represent a fit of the theoretical
model described in the text to the simulation data represented by
symbols for each of the system sizes studied. In the inset we plot V
versus size R for a fixed �Tk. Error bars denote 95% error bars in
the measured values of V.
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FIG. 4. �Color online� A schematic representation of a crystal
nucleus on the faceted terrace is shown in the left figure, which also
defines the variables introduced in the theoretical model described
in the text. The energies to grow crystal nuclei and to shrink an
underlying terrace are plotted schematically on the right.
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describes the size dependence of the MD growth velocities.
The MD results establish a significant size effect on facet

nucleation kinetics for nanowire growth in a pure system. It
remains to establish that the effect is relevant to nanowires
grown from alloy catalysts at realistic growth rates that are
orders of magnitude lower than those characteristic of the
MD simulations. The very small interface velocities found in
nanowire growth experiments implies small driving forces,
i.e., ��1 in Eqs. �1� and �3�. In the supplemental material
�29� it is shown that in this limit Eq. �3� for the interface
velocity V can be written in the form V�R ,�C�=M�R��C,
where M�R� is a size-dependent interface mobility given as

M�R� = V0� R

d1
	2

exp�− R

d2
	 . �4�

Here, d1=
Vm
wkBT /�G�a sin2����1−Cle� and d2=2kBT /

�a�c sin2���, where G� is the second derivative of the cata-
lyst molar free energy with respect to solute concentration,
evaluated at the equilibrium solute concentration Cle, and Vm

w

is the molar free energy of the nanowire. The magnitudes of
d1 and d2 can be estimated with the parameters given above
to be on the order of nanometers for typical growth tempera-
tures. Equation �4� predicts that the mobility reaches a maxi-
mum at R=2d2, beyond which M�R� decreases strongly with
increasing nanowire size, as observed in MD. The analysis
thus establishes that the dependence of the nanowire-catalyst
interface velocity on the wire radius found in the MD simu-
lations is expected to hold also for alloy catalysts and experi-
mentally relevant growth rates. It is thus expected that the
size effect elucidated in this work is an intrinsic feature of
crystal growth in systems that display interfaces with both
faceted and rough orientations.
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